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Abstract. In this paper gradient flows on unitary matrices are studied that maximize the real part of
the C-numerical range of an arbitrary complex n × n-matrix A. The geometry of the C-numerical
range can be quite complicated and is only partially understood. A numerical discretization scheme
of the gradient flow is presented that converges to the set of critical points of the cost function. Special
emphasis is taken on a situation arising in NMR spectroscopy where the matrices C,A are nilpotent
and the C-numerical range is a circular disk in the complex plane around the origin.
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1. Introduction

The C-numerical range and the C-numerical radius were introduced by Goldberg
and Straus [9] as generalisations of the classical numerical range W(A) and ra-
dius r(A), respectively. Let U(n,C) denote the compact Lie group of all unitary

complex n × n-matrices U ∈ C
n×n satisfying UU † = In, where U † = U

�

denotes Hermitian conjugate, i.e., complex conjugate transpose. For arbitrary com-
plex matricesC,A ∈ C

n×n theC-numerical range ofA is the subset of the complex
plane defined as

W(C,A) := {tr (C†UAU †)
∣∣U ∈ U(n,C)

}
. (1)

Unlike the usual numerical range W(A) of A, where C is a rank one Hermitian
projection operator and W(A) is convex, the geometry of the C-numerical range
can be quite complicated and is only partially understood. See, e.g., the special
issue [1] for a collection of papers on the C-numerical range.

From (1) it is easily seen that W(C,A) is invariant under unitary similarities of
A and C. Furthermore, W(C,A) is the continuous image of U(n,C) and therefore

� Extended paper version of a talk given at the MTNS ’2000 conference, July 19–23, 2000,
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is compact and connected. Moreover, W(C,A) is star like with respect to the point
(trC†)(trA)/n (see [6]).

In general, W(C,A) is not convex but even if it is, then sharp estimates on
the size of W(C,A) are unknown. It is therefore desirable to develop numerical
methods that enable one to find sharp bounds on the size of W(C,A). A natural
measure of the size of W(C,A) is the so-called C-numerical radius of A

rC(A) := max
{|tr (C†UAU †)|∣∣U ∈ U(n,C)

}
. (2)

Thus rC(A) is the smallest radius of disks centered at the origin containing W(C,A).
An upper bound for the C-numerical radius rC(A) is due to von Neumann, see
[9, 18], as

rC(A) ≤ ‖A‖C, (3)

where

‖A‖C = max
V,W

∣∣tr (VAWC†)
∣∣ ≤
∑
i

σi(A)σi(C), V ,W ∈ U(n,C) (4)

denotes the C-spectral norm, and σi(A) and σi(C) denote the singular values of
A and C ordered in descending magnitude, respectively. Equality is reached if A
and C are normal. Alternatively, one can consider the smallest sizes of rectangular
boxes containing W(C,A). This leads to the problem of finding the smallest/largest
real and imaginary parts of points in the C-numerical range, i.e., the boundary
points of the compact intervals

	(W(C,A)) := {	(tr (C†UAU †))|U ∈ U(n,C)},
�(W(C,A)) := {�(tr (C†UAU †))|U ∈ U(n,C)}. (5)

In [2] the boundary ∂W(C,A) of the C-numerical range for normal A and C is
studied. The authors classify points of ∂W(C,A) by regularity, i.e., via their degree
of smoothness. Except for the heuristic approach outlined in [8] there is to the best
of our knowledge no reported constructive method for computing ∂W(C,A) in the
general case.

Since

�(W(C,A)) = 	(W(iC,A)), i := √−1

we focus on the task of optimizing the smooth function

f : U(n,C) → R,

f (U) = 	(tr (C†UAU †)).
(6)

We approach the problem of optimizing the function f by designing a suitable
gradient flow, see also [8] for a similar approach. A discretization of the gradient
flow is given that leads to a numerical algorithm of finding the critical points of f .
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A complete theory is available for Hermitian matrices C,A (see [10]). For arbitrary
matrices C,A the function f may have local minima or local maxima and therefore
the gradient algorithm may not always converge to the global maximum. Thus a
general critical point analysis of f is difficult and currently out of reach. Never-
theless, the gradient flow approach leads to further insights and may provide, e.g.,
sometimes good estimates for the maximum, which are hard to achieve otherwise.
We illustrate this by studying the gradient flow for special choices of nilpotent
matrices C,A.

The maximization task for f as a means to assess rC(A) also arises in a natural
way in physics: It amounts to maximizing the generalised quantum mechanical ex-
pectation value governing the signal intensity in coherent ensemble spectroscopy.
Here we show that our methods lead to state of the art theoretical bounds in nuclear
magnetic resonance (NMR) spectroscopy. See [5, 8] for parallel efforts to tackle
related problems.

First, while recalling some definitions of quantum mechanics we relate the gen-
eralised notions of a quantum mechanical expectation value and the C-numerical
range. In cases relevant to the dynamics of spin-1/2 particles, the aim is to determ-
ine its extremal point, the C-numerical radius, see (2).

(I) QUANTUM MECHANICS OF CLOSED SYSTEMS

Usually, a state of a closed quantum system is represented by a state vector ψ(t),
i.e., by an element of a Hilbert space H . In multi-body problems, the total Hilbert
space is composed by taking the tensor product over all the single particle ones
H = H1 ⊗ H2 ⊗ · · · . A quantum mechanical observable X = X† is a linear
selfadjoint operator on H , and its expectation value 〈X〉 then takes the form of a
scalar product on H , the linear functional 〈X〉ψ = 〈ψ |Xψ〉.

Moreover, if U(t) ∈ U(H) is a one-parameter group of unitary operators on
a Hilbert space H , then there is a linear self-adjoint operator H on H called
the Hamiltonian which generates the unitary group by U(t) = e−itH (Stone’s
theorem). This accounts for the deterministic part of quantum mechanical time
evolution solving Schrödinger’s equation of motion

i
∂

∂t
ψ(t) = H ψ(t) (7)

by U(t) = e−itH such as to give

ψ(t) = U(t) ψ(0). (8)

(II) QUANTUM MECHANICS OF ENSEMBLES

In ensembles or in open quantum systems, a state is represented by a selfadjoint
non-negative linear operator normalised to a trace of one: it is called a density
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operator D [19]. Then D = D† ≥ 0 (i.e., the scalar product 〈ψ |Dψ〉 ≥ 0 for
all ψ ∈ H) and trD = 1. If D2 = D then D represents a pure state, otherwise a
non-pure state. Only pure states can be written as dyadic products |ψ〉〈ψ |, whereas
non-pure ones are non-trivial convex (i.e., trace-preserving) linear combinations of
pure ones (giving coherent superpositions). Non-pure states are generic in open
quantum systems or ensembles.

Nevertheless, the immediate analogue to Schrödinger’s equation of motion reads

i
∂

∂t
D(t) = [H,D(t)] (9)

with the solution

D(t) = U(t)D(0) U(t)†. (10)

Hamiltonian time evolution is reversible; it induces an automorphism on the al-
gebra of observables.

(III) RELATION TO C-NUMERICAL RANGE

In view of later applications, we now generalise the traditional concepts of expec-
tion values 〈X〉D = tr (UDU †X) and substitute the selfadjoint operators D, X by
two elements A, C that are no longer necessarily selfadjoint. A and C may thus
collect ‘some experimentally relevant terms’ from states D or observables X. The
generalised expectation value 〈C〉A = tr (UAU †C†) then is an element of the C-
numerical range of A, the largest absolute value of which is the C-numerical radius
of A.

In physical terms, the C-numerical radius determines the largest (absolute) gen-
eralised expectation value. Therefore it is of important significance to the experi-
mentalist: It specifically defines the maximum achievable projection under unitary
transfer of signal-relevant components A from a given initial quantum state onto
the signal-relevant components C† of a given observable.

As already mentioned above, little is known when it comes to explicitely cal-
culating either the C-numerical radius rC(A) or 	(tr (C†UAU †)) for non-normal
complex square matrices A,C, see also [12], as occuring in problems of physics.
Then the maximum transfer determined by maxU(n,C) 	(tr (C†UAU †)) (respect-
ively, rC(A)) can actually be obtained, provided the entire pertinent special unitary
group is generated by experimentally accessible system Hamiltonians. It can be
shown constructively that under mild conditions, this is the case in spin-1/2 sys-
tems [15]. So, for optimizing experiments in many kinds of coherent ensemble
spectroscopy, the knowledge of maximum values is of considerable interest.

We emphasize that the matrices A and C in our application are always finite
dimensional. For the NMR applications we have in mind only N-spin-1/2 systems
are relevant, i.e., the matrices A,C ∈ C

2N×2N .
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2. Gradient flows for the C-numerical range

Before analyzing the specific situation of interest in NMR spectroscopy, we first de-
rive some general results concerning the C-numerical range for arbitrary matrices.
Thus let C,A be arbitrary and

W(C,A) := {tr (C†UAU †)|U ∈ U(n,C)}. (11)

Recall that the set U(n,C) of complex unitary matrices is a compact connected Lie
group of real dimension n2. The tangent space of U(n,C) at an element U is

TUU(n,C) = {�U |�† = −�}. (12)

In particular, the tangent space of U(n,C) at the identity element I is the Lie
algebra

u(n,C) := {� ∈ C
n×n|�† = −�} (13)

of all skew-Hermitian matrices. In the sequel, we will endow U(n,C) with its
bi-invariant Riemannian metric defined on the tangent spaces TUU(n,C) as

〈�1U,�2U 〉 := 	(tr (�†
1�2)). (14)

The next lemma characterizes the critical points of the map q : U(n,C) → R
2

with image q(U(n,C)) = W(C,A)

q : U(n,C) → R
2,

U �→
(
	(tr (C†UAU †)),�(tr (C†UAU †))

)
,

(15)

for fixed but arbitrary square and complex matrices A,C.

LEMMA 2.1 [7].Let q be def ined by (15). Then
(a) The tangent map Dq(U) : TUU(n,C) → R

2 is given by

Dq(U)(�U) =
(
	(tr (�[B,C†]),�(tr (�[B,C†]))

)
,

where �U ∈ TUU(n,C), � = −�†, and B := UAU †.
(b) The rank of q at U is

rk U(q) = dim lin (W([B,C†])),
where lin (S) denotes the linear subspace of R

2 generated by the subset S ⊂ R
2

and W(Z) is the classical numerical range defined by

W(Z) := {x†Zx|x ∈ C
n, ‖x‖ = 1}.

�
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COROLLARY 2.1 Sharp points in W(C,A), i.e., the values q(U) of critical
points U having rank zero derivative are characterized by [UAU †, C†] = 0. �

We now investigate a measure of size of the C-numerical range.

2.1. EUCLIDEAN DISTANCE FUNCTION

For any U ∈ U(n,C) the Euclidean distance between C and UAU † is

‖C − UAU †‖2 = ‖C‖2 + ‖A‖2 − 2	(tr (C†UAU †)), (16)

where here and in the sequel ‖ · ‖ always means the Frobenius norm, i.e., ‖C‖ =√
tr (CC†). Thus minimizing the distance between C and UAU † is the same as

maximizing the trace function f : U(n,C) → R, defined by (6). Let

X = X+ + X− = X + X†

2
+ X − X†

2
(17)

denote the unique decomposition of X ∈ C
n×n into Hermitian part X+ and skew-

Hermitian part X−. Let

[A,B] := AB − BA (18)

denote the commutator. Then

[A,B]− = [A,B] + [A†, B†]
2

. (19)

The gradient flow appearing in the next theorem has been first used in [8] as a
means to optimize f .

THEOREM 2.1 The gradient flow of f : U(n,C) → R defined by (6) with respect
to the bi-invariant Riemannian metric (14) is given from the gradient

grad f (U) = [C†, UAU †]−U (20)

as

U̇ = grad f (U)

= [C†, UAU †]−U

= 1
2 (C

†UA + CUA† − UAU †C†U − UA†U †CU).

(21)

Every solution of (21) exists in U(n,C) for all t ∈ R and converges for t → ±∞
to a critical point. The critical points of f are characterized as

[C†, UAU †] = [C†, UAU †]†. (22)
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Proof. The Fréchet derivative of f at U ∈ U(n,C) is the linear map on the
tangent space TUU(n,C) defined by

Df (U)(�U) = 	(tr (C†[�,UAU †]))
= 	(tr ([UAU †, C†]�))
= tr ([C†, UAU †]†

−�)
(23)

and therefore

grad f (U) = [C†, UAU †]−U (24)

is the gradient. By compactness of U(n,C) the solution of (21) exists for all t ∈ R

and converges to the set of critical points. Since grad f is a real analytic gradient
vector field the pointwise convergence of (21) follows from a result by Łojasiewicz
[14]. The result follows. �
Note that the gradient flow (21) tends to maximize the trace function f : U(n,C) →
R. Moreover, if C = C† and A = A† are both Hermitian then the gradient flow
simplifies to

U̇ = [C,UAU †]U. (25)

In this case critical points are characterized as,

[C,UAU †] = 0 (26)

because [C,UAU †]− = [C,UAU †] holds. In this simpler situation a complete
phase portrait analysis of the gradient flow can be given; see [3] and [10]. The
general case studied here is, however, more complicated and not fully understood.
If only C = C† is Hermitian then the flow is seen as equal to

U̇ = [C†, U(A + A†)U †]−U
= [C,U(A + A†)U †]−U
= 1

2

(
[C,U(A + A†)U †] − [C,U(A + A†)U †]†

)
U

= [C,U(A + A†)U †]U
(27)

and we are reduced to the fully Hermitian case.
Stability properties of the critical points of (21) are expressed in terms of the

eigenvalues of the Hessian. To determine the Hessian of f : U(n,C) → R at a
critical point U∞ ∈ U(n,C), withA∞ := U∞AU †∞, one has to compute the second
derivative of

φ(t) = 	(tr (C†et�A∞e−t�)) (28)

at t = 0 for arbitrary � ∈ u(n,C):

φ′′(0) = 	(tr (C†[�, [�,A∞]])). (29)

We compute the Hessian bilinear form by the familar polarization process from the
quadratic form (29). A straight forward computation shows the following result.
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PROPOSITION 2.1 Let U∞ ∈ U(n,C) be a critical point of f : U(n,C) → R,
A∞ := U∞AU †∞, and let

S : u(n,C) → u(n,C)

be the self-adjoint operator defined as

S(�) := [[�,A∞], C†] + [C, [A†
∞,�]] + [[�,C], A†

∞] + [A∞, [C†,�]].
Then the Hessian of f at U∞ is given as the symmetric bilinear form

Hf (�1,�2) = 1

4
tr (�1S(�2)).

Moreover,

1

2
S(�) = [[�,A∞], C†]− + [[�,C], A†

∞]−.

�

3. Discretization

We now aim at a suitable step size selection to derive an implementable numerical
integration scheme for the above differential equation. Standard numerical integra-
tion methods such as, e.g., the Euler method are not applicable here as they do not
preserve the unitary nature of the solution. The discretization we propose is similar
as in [8]

Uk+1 = exp(αk[C†, UkAU
†
k ]−)Uk (30)

yet with a specific step size αk ≥ 0 to be determined. See [4, 10] for similar step
size selection schemes in different contexts.

THEOREM 3.1 Let

αk :=
∥∥∥[C†, UkAU

†
k ]−
∥∥∥2

∥∥∥[C†, [C†, UkAU
†
k ]−]
∥∥∥ ·
∥∥∥[UkAU

†
k , [C†, UkAU

†
k ]−]
∥∥∥ . (31)

Then (30) converges to the set of critical points of f .

Proof. For � := [C†, B]−, B := UkAU
†
k let

φ(t) := 	(tr (C†et�Be−t�)). (32)

The derivative of φ is

φ′(t) = 	(tr ([et�Be−t�, C†]�)) (33)



GRADIENT FLOWS COMPUTING THE C-NUMERICAL RANGE 291

with

φ′(0) = 	(tr ([B,C†]�))
= tr ([B,C†]−�)
= −tr (�2)

= ‖�‖2

= ‖[C†, B]−‖2

≥ 0

(34)

and φ′(0) = 0 if and only if Uk is a critical point of f . Moreover,

φ′′(t) = 	(tr ([C†,�][�, et�Be−t�])). (35)

Therefore, since et� is unitary, we have for all t

|φ′′(t)| ≤
∥∥∥[C†,�]

∥∥∥ ·
∥∥∥[�, et�Be−t�]

∥∥∥
=
∥∥∥[C†,�]

∥∥∥ ·
∥∥∥et�[�,B]e−t�

∥∥∥
=
∥∥∥[C†,�]

∥∥∥ ·
∥∥∥[�,B]

∥∥∥.
(36)

By the Mean Value Theorem this implies

|φ′(t) − φ′(0)| ≤ sup
0≤τ≤t

|φ′′(τ )| · t. (37)

That is, for

t ≤ αk := ‖�‖2∥∥∥[C†,�]
∥∥∥ ·
∥∥∥[�,B]

∥∥∥ (38)

then by (36)

|φ′(t) − φ′(0)| ≤
∥∥∥[C†,�]

∥∥∥ ·
∥∥∥[�,B]

∥∥∥ · t
≤ ‖�‖2

= φ′(0).
(39)

This shows that

φ′(t) ≥ 0 for t ∈ [0, αk] (40)

and therefore φ is monotonically increasing on [0, αk]. Thus

φ(αk) ≤ φ(t∗), (41)

i.e.,

0 ≤ φ(αk) − φ(0)
≤ φ(t∗) − φ(0)

(42)
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with

t∗ := arg max{φ(t)|t ≥ 0} ∈ [0,∞). (43)

Since et� stays in the compact set U(n,C), t∗ exists (although it need not be finite).
The result now follows from a familar Lyapunov-type argument, as explained in
section 2.3 of [10]. �

In particular the above result holds for all step sizes 0 ≤ α ≤ αk. Thus upper
bounds on the denominator in αk lead to more conservative step size selection
schemes.

COROLLARY 3.1 Convergence of (30) holds for the step size

α∗
k =

∥∥∥[C†, UkAU
†
k ]−
∥∥∥

2‖A‖ ·
∥∥∥[C†, [C†, UkAU

†
k ]−]
∥∥∥ (44)

and in particular for the constant step size

α∗∗
k = 1

4‖A‖ · ‖C‖ . (45)

Proof. From∥∥∥[B,�]
∥∥∥ ≤ 2‖B‖ · ‖�‖

= 2‖A‖ · ‖�‖ (46)

we obtain

α∗
k = ‖�‖

2‖A‖ ·
∥∥∥[C†,�]

∥∥∥
≤ ‖�‖2∥∥∥[C†,�]

∥∥∥ ·
∥∥∥[�,B]

∥∥∥
= αk.

(47)

and similarly

α∗∗
k ≤ α∗

k . �

Recently, many of the existing numerical integration schemes which are usually
formulated with respect to R

n were generalized to the Lie group case. That is, if
instead on R

n the solution of a system of ordinary differential equations (ODE)
is a smooth curve on a Lie group, these new methods also produce iterates living
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on the same Lie group. For many applications higher order methods are a good
choice, especially if one is interested not only in an equilibrium point of an ODE
but also in an approximation of the whole trajectory. Therefore, for our purpose it
is completely sufficient to use a first order method, i.e., (30). Higher order meth-
ods will have better approximation properties but will be in general slower due to
greater computational complexity. For recent work and additional information on
Lie methods for numerical integration schemes see [11].

4. Special Nilpotent Matrices

In this section, motivated by recent results in NMR spectroscopy of so-called InS-
spin systems, see [8] and [15], we consider the optimization task for f defined by
(6) for special choices of nilpotent matrices C,A.

For any n ∈ N consider the recursively defined nilpotent (2n+1 ×2n+1)-matrices

Cn :=
[

0 0
I2n 0

]
, C0 :=

[
0 0
1 0

]
,

An :=
[
Nn 0
0 Nn

]
,

Nn :=
[
Nn−1 0
I2n−1 Nn−1

]
, N0 := 0.

(48)

Here and in the sequel zero entries stand for zero matrices of appropriate order and
In stands for the (n × n)-identity matrix. Thus for n = 1, 2, 3 we have

C1 =
 0 0

0 0
0 0
0 0

1 0
0 1

0 0
0 0

 , A1 =
 0 0

1 0
0 0
0 0

0 0
0 0

0 0
1 0

 , (49)

C2 =
[

0 0
I4 0

]
, A2 =



0 0 0 0

1 0 0 0

1 0 0 0

0 1 1 0

0

0

0 0 0 0

1 0 0 0

1 0 0 0

0 1 1 0


, (50)
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C3 =
[

0 0
I8 0

]
,

A3 =



0 0 0 0

1 0 0 0

1 0 0 0
0 1 1 0

0 0 0

I4

0 0 0 0

1 0 0 0

1 0 0 0
0 1 1 0

0 0

0 0

0 0 0 0

1 0 0 0

1 0 0 0

0 1 1 0

0

0 0 I4

0 0 0 0

1 0 0 0

1 0 0 0

0 1 1 0



.

(51)

Hence,

Cn =
[

0 0
I2n 0

]
, An =

 An−1 + Cn−1 0

0 An−1 + Cn−1

 . (52)

LEMMA 4.1 For C =
[

0 0
I 0

]
and A arbitrary but square the C-numerical range

W(C,A) is a circular disk around the origin, i.e.,

W(C,A) = eiθW(C,A)

for all θ ∈ R.

Proof. Note that C is of the so-called block-shift form, therefore Theorem 2.1. in
[13] can be applied. �

The critical points of f : U(2n+1,C) → R, defined by (6) can be characterized
in a somewhat more explicit way.

LEMMA 4.2 Let C = Cn as in (48) and A arbitrary but square. Let B := UAU †

with U ∈ U(2n+1,C). U is a critical point for f if and only if

B = UAU † =
[
B1 B2

H B1

]
(53)

with H = H † Hermitian.

Proof. By (22)

[C†, B] =
[

0 In
0 0

] [
B1 B2

B3 B4

]
−
[
B1 B2

B3 B4

] [
0 In
0 0

]
=
[
B3 B4 − B1

0 −B3

]
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is Hermitian. Therefore B4 = B1 and B3 = B
†
3 must hold.

�
Note that there exists an orthogonal permutation matrix P such that

PAnP
† = P

[
Nn 0
0 Nn

]
P †

= P


Nn−1 0 0 0
I2n−1 Nn−1 0 0

0 0 Nn−1 0
0 0 I2n−1 Nn−1

P †

=
 Nn−1 0

0 Nn−1
0

I2n
Nn−1 0
0 Nn−1

 .
(54)

COROLLARY 4.1 For C = Cn and A = An the permutation matrix P defined by
(54) is a critical point of
(a) the map q : U(2n+1,C) → R

2, defined by (15),
(b) the cost function f : U(2n+1,C) → R, defined by (6).

Proof. Note that [PAnP
†, C†

n] =
[−I2n 0

0 I2n

]
. From

linW(X) = i tr (X · u(2n+1,C))

it follows that

linW([PAnP
†, C†

n]) = i tr

([−I2n 0
0 I2n

]
· u(2n+1,C)

)
.

But any skew-Hermitian matrix has purely imaginary diagonal entries and there-
fore

dim linW
([
PAnP

†, C†
n

]) = 1 < 2.

Part (b) follows since PAnP
† has the form (53). �

Now we apply Lemma 2.1 to the case C =
[

0 0
I 0

]
. By Lemma 4.1 W(C,A) is a

disk around 0. By Corollary 2.1 the derivative of q at U has rank zero if and only
if [C†, UAU †] = 0 holds. Defining

B =
[
B1 B2

B3 B4

]
:= UAU †,

then [C†, B] = 0 is equivalent to B1 = B4 and B3 = 0, i.e.,

B =
[
B1 B2

0 B1

]
.

Consequently, tr (C†B) = 0. That is, we have proved
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LEMMA 4.3 For n even let C =
[

0 0
In/2 0

]
and let q : U(n,C) → R

2, defined by

(15). Then any rank zero critical point U of q has critical value q(U) = 0. �

The next result shows that critical values of q form circles in R
2.

THEOREM 4.1 For n even let C =
[

0 0
In/2 0

]
and let q : U(n,C) → R

2, defined

by (15). Let U be a rank one critical point of q with critical value q(U). Then for
all φ ∈ R

eiφq(U)

is also a critical value.

Proof. For arbitrary X ∈ C
n×n it holds

linW(X)= i tr (X · u(n,C))

=
{

i tr (XV i(V †)

∣∣∣V ∈U(n,C),(=diag (λ1, .., λn), λ1, .., λn∈R

}
.

Therefore, dim linW(X) = 1 is equivalent to saying that the diagonal entries yii ∈
C of Y = (yij ) := V †XV for all V ∈ U(n,C) are elements of one and the same
real one-dimensional subspace of R

2 ∼= C. Now assume dim linW(X) = 1. Hence,
there exists an α ∈ R such that for all V ∈ U(n,C) the diagonal entries eiαyii of
the matrix eiαY are real. Decompose eiαY = (eiαY )+ + (ei alphaY )− into Hermitian
and skew-Hermitian part. Consequently, for all V ∈ U(n,C) the diagonal entries
of (eiαY )− = (eiαY −e−iαY †)/2 have to be zero, i.e., the skew-Hermitian part itself
has to be zero, i.e., eiαY = (eiαY )+ = e−iαY † is Hermitian. Now set X = [B,C†]
with B =

[
B1 B2
B3 B4

]
:= UAU †. Then

eiαX = eiα

[−B3 B1 − B4

0 B3

]
is also Hermitian. Hence eiαB3 = e−iαB

†
3 and B1 = B4. Therefore B has the

structure

B =
[

B1 B2

e−iαK B1

]
with K = K† = eiαB3.

An easy calculation shows that if U is critical of rank one with critical value
q(U) = e−iαtrK then for all φ ∈ R[

e−iφ/2In/2 0
0 eiφ/2In/2

]
U

is also a rank one critical point with critical value ei(φ−α)trK. The result follows.�
The following Theorem gives upper bounds for 	 (tr (C†

nUAnU
†)) for any n ∈ N .
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THEOREM 4.2 For An,Cn, defined by (48) and for all U ∈ U(2n+1,C) it holds

	 (tr (C†
nUAnU

†)) ≤ 2(n − m)

(
n

m

)
where m = n/2 if n is even and m = (n − 1)/2 if n is odd.

Proof. Define for all n ∈ N0

Fn :=
[

0 I2n

I2n 0

]
, Gn := i

[
0 I2n

−I2n 0

]
, (55)

and for all n ∈ N recursively

Xn :=
[
Xn−1 + Fn−1 0

0 Xn−1 + Fn−1

]
, X0 := 02 , (56)

Yn :=
[
Yn−1 + Gn−1 0

0 Yn−1 + Gn−1

]
, Y0 := 02 . (57)

By induction on n it is easily seen that for all n ∈ N

Cn = 1

2
(Fn + iGn)

An = 1

2
(Xn + iYn)

coincide with the formerly defined matrices An,Cn, see (48). That is, we get for
all n ∈ N the unique additive decomposition of An and Cn, respectively, into
Hermitian and skew-Hermitian parts. Consequently,

	 tr (C†
nUAnU

†) = 1

4
tr (FnUXnU

† + GnUYnU
†). (58)

Now we compute the eigenvalues of Xn and Yn, respectively. Let

πn(λ) := det(λI − Xn)

be the characteristic polynomial of Xn. By definition (56) of Xn

πn(λ) := det(λI − Fn−1 − Xn−1)
2.

But

det(λI − Fn−1 − Xn−1) = det

[
λI−Fn−2 −Xn−2 I

I λI−Fn−2−Xn−2

]
= det

(
(λI − Fn−2 − Xn−2)

2 − I
)

= det
(
λI − I − Fn−2 − Xn−2

) ·
det
(
λI + I − Fn−2 − Xn−2

)
.
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Therefore,

det(λI − Fn−1 − Xn−1)
2 = det

(
(λ− 1)I−Fn−2−Xn−2)

)2·

det
(
(λ + 1)I−Fn−2 −Xn−2)

)2
= πn−1(λ− 1) · πn−1(λ + 1),

i.e.,

πn(λ) = πn−1(λ − 1) · πn−1(λ + 1).

By induction on n we get

LEMMA 4.4 The eigenvalues of Xn, or equivalently, the roots of πn(λ) are given
as

n − 2k, k = 0, 1, . . . , n,

each occuring with multiplicity

2

(
n

k

)
,

respectively. �

By the same arguments the eigenvalues of Yn can be computed. In fact, it turns out
that the spectrum of Yn and the spectrum of Xn are identical. From the definition
of Fn and Gn, see (55), it is easily seen that the spectrum of Fn and the spectrum
of Gn are also identical, the eigenvalues being ±1, each with multiplicity 2n.

Now we are in the position to compute the maximum values

max
U∈U(2n+1,C)

tr (FnUXnU
†)

and

max
U∈U(2n+1,C)

tr (GnUYnU
†),

respectively. By the hermiticity of the matrices Fn,Gn,Xn, and Yn it is a well
known fact that these maximum values are just the sum of the pairwise products
of the eigenvalues of Gn and Yn, (respectively, Fn and Xn), provided that they are
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ordered similarly by their magnitude. Therefore,

max
U∈U(2n+1,C)

tr (FnUXnU
†) = max

U∈U(2n+1,C)
tr (GnUYnU

†)

= 2
m∑
k=0

2
(
n

k

)
(n − 2k)

= 4
m∑
k=0

n
((

n−1
k

)− (n−1
k−1

))
= 4n

(
n−1
m

)
= 4(n − m)

(
n

m

)

.

Now, it is a priori not evident (and in general wrong) that this maximum value is
simultaneously attained, i.e., that there exists a unitary matrix, say Ũ ∈ U(2n+1,C),
such that

tr (FnŨXnŨ
†) = tr (GnŨYnŨ

†) = 4(n − m)

(
n

m

)
.

Nevertheless, we at least obtain the estimate

max
U∈U(2n+1,C)

	 (tr (C†
nUAnU

†)) = 1
4 max
U∈U(2n+1,C)

tr (FnŨXnŨ
† + GnŨYnŨ

†)

≤ 2(n − m)
(
n

m

)
as claimed. �

COROLLARY 4.2 For n = 1, 2 the upper bounds of Theorem 4.2 are sharp ones,
i.e.,
(a) max

U∈U(4,C)
	 (tr (C†

1UA1U
†)) = 2,

(b) max
U∈U(8,C)

	 (tr (C†
2UA2U

†)) = 4.

Proof. Using the orthogonal permutation matrix P defined by (54) the maximum
value is attained for n = 1, 2. �
Our next result yields an upper bound on max

U∈U(2n+1,C)
	 (tr (C†

nUAnU
†)) which is

independent of n for sufficiently large n. We first need a lemma.

LEMMA 4.5 For An and Cn as defined in (48) it holds

‖Cn‖2 = 2n, ‖An‖2 = n2n.
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Proof. One has

‖Cn‖2 = tr I2n = 2n.

Also

‖An‖2 = 2‖An−1 + Cn−1‖2

= 2‖An−1‖2 + 2‖Cn−1‖2 + 4tr (A�
n−1Cn−1).

Since

Cn−1 =
[

0 0
I2n−1 0

]
, A�

n−1 =
[
A�
n−2 + C�

n−2 0
0 A�

n−2 + C�
n−2

]
,

we see that tr (A�
n−1Cn−1) = 0 and therefore

‖An‖2 = 2‖An−1‖2 + 2n, ‖A0‖2 := 0.

Thus

‖An‖2 =
n−1∑
k=0

2k2n−k = n2n.

�
From Theorem 4.2 and Lemma 4.5 we have

max
U∈U(2n+1,C)

	 (tr (C†
nUAnU

†))

‖An‖ · ‖Cn‖ ≤ 2(n − m)nm√
n2n

=: kn.
Let n := 2m be even. By Stirling’s formula

n! ≈ √
2πn
(n

e

)n
.

Thus

k2m = 2m
(2m
m

)
√

2m 22m

= √
2m 2−2m (2m)!

m!m!

≈ √
2m 2−2m

√
2π2m√

2πm
√

2πm

(
2m
e

)2m(
m
e

)2m
= 2−2m

√
2

π
22m

=
√

2

π
< 1.
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Thus for n sufficiently large the upper bound

kn ≈
√

2

π
.

These bounds improve the SVD upper bounds (3) already known, see e.g., [8]
and references cited therein. For n ≤ 3 they are also reported in [17]. The fully
Hermitian case appeared already in [16].

4.1. STEP SIZE SELECTIONS REVISITED

We have seen that the step size

αk =
∥∥∥[C†, UkAU

†
k ]−
∥∥∥2

∥∥∥[C†, [C†, UkAU
†
k ]−]
∥∥∥ ·
∥∥∥[UkAU

†
k , [C†, UkAU

†
k ]−]
∥∥∥ . (59)

guarantees convergence. Consider the nilpotent matrices An and Cn as in (48). For
the block partioned matrices

B(k) := UkAU
†
k =
[
B
(k)
11 B

(k)
12

B
(k)
21 B

(k)
22

]
,

the step size (59) is rewritten as

αk =
∥∥∥[C†, B(k)]−

∥∥∥2

∥∥∥[C†, [C†, B(k)]−]
∥∥∥ ·
∥∥∥[B(k), [C†, B(k)]−]

∥∥∥ . (60)

Now ∥∥∥[C†, B(k)]−
∥∥∥2 =

∥∥∥∥[ (B(k)
21 )− B

(k)
22 − B

(k)
11

−(B(k)
22 − B

(k)
11 )

† −(B(k)
21 )−

]∥∥∥∥2

= 2‖(B(k)
21 )−‖2 + 2‖B(k)

22 − B
(k)
11 ‖2.

Also ∥∥∥[C†, [C†, B(k)]−]
∥∥∥ =

∥∥∥∥[−(B(k)
22 − B

(k)
11 )

† −2(B(k)
21 )−

0 (B
(k)
22 − B

(k)
11 )

†

]∥∥∥∥
=
√

2‖B(k)
22 − B

(k)
11 ‖2 + 4‖(B(k)

21 )−‖2.

But ∥∥∥[B(k), [C†, B(k)]−]
∥∥∥ ≤ 2‖A‖ · ‖[C†, B(k)]−‖.
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Thus convergence still holds for∥∥∥[C†, B(k)]−
∥∥∥

2‖A‖ ·
∥∥∥[C†, [C†, B(k)]−]

∥∥∥ = 1

2‖A‖

√√√√2‖(B(k)
21 )−‖2 + 2‖B(k)

22 − B
(k)
11 ‖2

4‖(B(k)
21 )−‖2 + 2‖B(k)

22 − B
(k)
11 ‖2

and hence for the lower bound

1

2
√

2 ‖A‖ .

Consequently, using Lemma 4.5, we have proved

THEOREM 4.3 Let An and Cn as in (48). Then for the constant step size

α∗∗∗ = 1√
n2n+3

(61)

the algorithm

Uk+1 = eα
∗∗∗[C†,UkAU

†
k ]−Uk

converges to the set of critical points of f (U) = 	 tr (C†UAU †). �

REMARK 4.1 For all n ∈ N with n ≥ 2 it holds α∗∗ ≤ α∗∗∗. �

We conclude with the following conjecture that gives the prospective maximal
values of the cost function.

CONJECTURE 4.1 For An,Cn, defined by (48) the gradient flow of the function
	(tr (C†

nUAnU
†)) converges to the following maximal values f max

n :

n 1 2 3 4 5 6

fmax
n 2 4 4(1 + √

3) 8(1 + √
3) 16(1 + √

3) + 4
√

5 32(1 + √
3) + 8

√
5

For numerical illustration, we compare the values from the above Conjecture
with the more conservative estimate given in Theorem 4.2 as well as with the even
rougher upper bound by the C-spectral norm of A (see Eq. 4) mentioned in the
introduction.
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n 1 2 3 4 5 6

fmax
n 2 4 10.9282 21.8564 52.6571 105.3142

f Th.4.2
n = 2 (n −m)

(
n

m

)
2 4 12 24 60 120

f SVD
n = ‖An‖Cn 2 5.6569 12.9282 29.1117 66.5067 142.2638

5. Numerical experiments

In this section we present a few numerical experiments. We apply our discretization
method (30) to maximize the function f : U(2n+1,C) → R, defined by (6) to
the above special case of nilpotent matrices. For n = 1 the matrices A1 and C1,
defined by (49), are unitarily similar, so we disregard this case. For n = 2, . . . , 6
see the recursive definition (48) of the matrices An and Cn, respectively. Initial
unitary matrices U0 are chosen by computing the QR-decomposition of a randomly
generated complex matrix. Each plot combines the trajectories of five different
initial values. Experiments with the step sizes αk, α∗

k , and α∗∗∗, defined by (31),
(44), and (61), respectively, are reported below. The function

cost := f max
n − 	(tr (C†

nUkAnU
†
k ))

is plotted on a logarithmic scale against the number of iterations. The values of
f max
n for n = 2, . . . , 6 are taken from Conjecture 4.1. Figure 1 shows experiments

with the adaptive step size (31). The contents of Figure 2 are simulations with the
more conservative step size selection of (44), whereas the last figure shows the rel-
atively slow convergence of the constant step size defined by (61). The termination
criteria we used for the several plots can be seen from the following table.
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Figure 1. Minimization of the function cost := fmax
n − 	(tr (C†

nUkAnU
†
k
)) by discretization

of the associated gradient flow using the adaptive step size αk , defined by (31).
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Figure 2. Minimization of the function cost := fmax
n − 	(tr (C†

nUkAnU
†
k
)) by discretization

of the associated gradient flow using the adaptive step size α∗
k

, defined by (44).
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Figure 3. Minimization of the function cost := fmax
n − 	(tr (C†

nUkAnU
†
k
)) by discretization

of the associated gradient flow using the constant step size defined by (61).
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Number of I–Spins Termination Criterion

n cost or: no. of steps k

2 < 10−6 > 1000

3 < 10−6 > 1000

4 < 10−5 > 1000

5 < 10−4 > 1000

6 < 10−3 > 1000

In all figures plotted points are joined by linear interpolation. The number of
iterations seems to be typical in each case. The plots document linear convergence
to a maximum as one would expect for a gradient-like method.

6. Acknowledgements

This work (U.H.) was completed during a sabbatical leave, spent at the Department
of Systems Engineering, RSISE, ANU, Canberra, Australia. The hospitality of the
Department members is gratefully acknowledged.

This work (T.S.-H.) was mainly performed during a sabbatical leave at Uni-
versity of Würzburg, Department of Mathematics, Lehrstuhl II, Germany. The
generous reception and fruitful atmosphere is gratefully appreciated.

This research was partially supported by a Grant from DAAD, PPP Hong Kong
D/01/22045 (U.H., K.H.) and by Deutsche Forschungsgemeinschaft, DFG, Grant
SCHU-1374/1-1 (T.S.-H.).

References

1. T. Ando and C.-K. Li, editors. Special Issue: The Numerical Range and Numerical Radius,
volume 37, 1–3 of Linear and Multilinear Algebra, pp. 1–238. Gordon and Breach, 1994.

2. N. Bebiano and J. Da Providência, On the boundary of the C-numerical range of a normal
matrix. Linear a nd Multilinear Algebra 23: 145–157, 1988.

3. R.W. Brockett. Dynamical systems that sort lists, diagonalize matrices, and solve linear pro-
gramming problems. In Proc. IEEE of the 27th Conference on Decision and Control, pages
799–803, Austin, TX, 12 1988. See also Lin. Algebra & Applic., 146: 79-91, 1991.

4. R.W. Brockett. Differential geometry and the design of gradient algorithms. In Proceedings of
Symposia in Pure Mathematics, 54, pp. 69–91, 1993.

5. R.W. Brockett and N. Khaneja. On the stochastic control of quantum ensembles. System theory:
modeling, analysis and control, 75–96, Kluwer Internat. Ser. Engrg. Comput. Sci., 518, Kluwer
Academic Publishers, Boston, MA, 2000.



308 U. HELMKE ET AL.

6. W.-S. Cheung and N.-K. Tsing, The C-numerical range of matrices is star-shaped. Linear and
Multilinear Algebra, 41: 245–250, 1996.

7. J. Dazord. On the C-numerical range of a matrix. Lin. Algebra & Applic., 212/213: 21–29,
1994.

8. S.J. Glaser, T. Schulte-Herbrüggen, M. Sieveking, O. Schedletzky, N.C. Nielsen, O.W.
Sørensen and C. Griesinger, Unitary control in quantum ensembles: Maximizing signal
intensity in coherent spectroscopy. Science, 280: 421–424, 1998.

9. M. Goldberg and E.G. Straus, Elementary inclusion relations for generalized numerical ranges.
Lin. Algebra & Applic., 18: 1–24, 1977.

10. U. Helmke and J.B. Moore. Optimization and Dynamical Systems. CCES. Springer, London,
1994.

11. A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett, and A. Zanna, Lie-group methods. Acta Numerica
9: 215–365, 2000.

12. C.-K. Li. C-numerical ranges and C-numerical radii. Linear and Multilinear Algebra 37(1-3):
51–82, 1994.

13. C.-K. Li and N.-K. Tsing, Matrices with circular symmetry on their unitary orbits and C-
numerical ranges. Proceedings of the American Math. Soc. 111(1): 19–28, 1991.

14. S. Łojasiewicz. Sur les trajectoires du gradient d’une fonction analytique. Seminari di geo-
metria 1982-1983, Università di Bologna, Istituto di Geometria, Dipartimento di Matematica,
1984.

15. T. Schulte-Herbrüggen. Aspects and Prospects of High-Resolution NMR. PhD thesis, ETH
Zürich, 1998. Diss. ETH No. 12752.

16. O.W. Sørensen. Polarization transfer experiments in high-resolution NMR spectroscopy.
Progress in NMR Spectroscopy 21: 503–569, 1989.

17. J. Stoustrup, O. Schedletzky, S.J. Glaser, C. Griesinger, N.C. Nielsen, and O.W. Sørensen.
Generalized bound on quantum dynamics: Efficiency of unitary transformations between non-
hermitian states. Physical Review Letters 74(15): 2921–2924, 1995.

18. J. von Neumann. Some matrix-inequalities and metrization of matrix-spaces. Tomsk Univ. Rev.
1: 286–300, 1937.

19. J. von Neumann. Mathematical Foundations of Quantum Mechanics. Princeton University
Press, Princeton, NJ, 1955.


